NORT: Runtime Anomaly-based Monitoring of Malicious Behavior for Windows

Protecting running programs from exploits has been the focus of many host-based intrusion detection systems. To this end various formal methods have been developed that either require manual construction of attack signatures or modelling of normal program behavior to detect exploits. In terms of the...

全面介紹

Saved in:
書目詳細資料
Main Authors: MILEA, Narcisa Andrea, KHOO, Siau-Cheng, LO, David, POP, Cristi
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2011
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/1404
http://dx.doi.org/10.1007/978-3-642-29860-8_10
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Protecting running programs from exploits has been the focus of many host-based intrusion detection systems. To this end various formal methods have been developed that either require manual construction of attack signatures or modelling of normal program behavior to detect exploits. In terms of the ability to discover new attacks before the infection spreads, the former approach has been found to be lacking in flexibility. Consequently, in this paper, we present an anomaly monitoring system, NORT, that verifies on-the-fly whether running programs comply to their expected normal behavior. The model of normal behavior is based on a rich set of discriminators such as minimal infrequent and maximal frequent iterative patterns of system calls, and relative entropy between distributions of system calls. Experiments run on malware samples have shown that our approach is able to effectively detect a broad range of attacks with very low overheads.