SAMMPLE: Detecting Semantic Indoor Activities in Practical Settings using Locomotive Signatures
We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-T ier activity extraction framework (called SAMMPLE) for our...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2012
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1521 https://ink.library.smu.edu.sg/context/sis_research/article/2520/viewcontent/MisraAiswc_2tier.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We analyze the ability of mobile phone-generated accelerometer data to detect high-level (i.e., at the semantic level) indoor lifestyle activities, such as cooking at home and working at the workplace, in practical settings. We design a 2-T ier activity extraction framework (called SAMMPLE) for our purpose. Using this, we evaluate discriminatory power of activity structures along the dimension of statistical features and after a transformation to a sequence of individual locomotive micro-activities (e.g. sitting or standing). Our findings from 152 days of real-life behavioral traces reveal that locomotive signatures achieve an average accuracy of 77.14%, an improvement of 16.37% over directly using statistical features. |
---|