Real-world parameter tuning using factorial design with parameter decomposition

In this paper, we explore the idea of improving the efficiency of factorial design for parameter tuning of metaheuristics. In a standard full factorial design, the number of runs increases exponentially as the number of parameters. To reduce the parameter search space, one option is to first partiti...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: GUNAWAN, Aldy, LAU, Hoong Chuin, WONG, Elaine
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2011
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/1612
https://ink.library.smu.edu.sg/context/sis_research/article/2611/viewcontent/RealWorldParameterTuning_2013_AdvMetaheuristics.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:In this paper, we explore the idea of improving the efficiency of factorial design for parameter tuning of metaheuristics. In a standard full factorial design, the number of runs increases exponentially as the number of parameters. To reduce the parameter search space, one option is to first partition parameters into disjoint categories. While this may be done manually based on user guidance, an automated approach proposed in this paper is to apply a fractional factorial design to partition parameters based on their main effects where each partition is then tuned independently. With a careful choice of fractional design, our approach yields a linear rather than exponential run time performance with respect to the number of parameters. We empirically evaluate our approach for tuning a simulated annealing algorithm that solves an industry spares inventory optimization problem. We show that our proposed methodology leads to improvements in terms of the quality of solutions when compared to a pure application of an automated parameter tuning configurator ParamILS.