Computing Immutable Regions for Subspace Top-k Queries
Given a high-dimensional dataset, a top-k query can be used to shortlist the k tuples that best match the user’s preferences. Typically, these preferences regard a subset of the available dimensions (i.e., attributes) whose relative significance is expressed by user-specified weights. Along with the...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1624 https://ink.library.smu.edu.sg/context/sis_research/article/2623/viewcontent/p73_mouratidis_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-2623 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-26232020-03-25T03:42:50Z Computing Immutable Regions for Subspace Top-k Queries MOURATIDIS, Kyriakos PANG, Hwee Hwa Given a high-dimensional dataset, a top-k query can be used to shortlist the k tuples that best match the user’s preferences. Typically, these preferences regard a subset of the available dimensions (i.e., attributes) whose relative significance is expressed by user-specified weights. Along with the query result, we propose to compute for each involved dimension the maximal deviation to the corresponding weight for which the query result remains valid. The derived weight ranges, called immutable regions, are useful for performing sensitivity analysis, for finetuning the query weights, etc. In this paper, we focus on top-k queries with linear preference functions over the queried dimensions. We codify the conditions under which changes in a dimension’s weight invalidate the query result, and develop algorithms to compute the immutable regions. In general, this entails the examination of numerous non-result tuples. To reduce processing time, we introduce a pruning technique and a thresholding mechanism that allow the immutable regions to be determined correctly after examining only a small number of non-result tuples. We demonstrate empirically that the two techniques combine well to form a robust and highly resource-efficient algorithm. We verify the generality of our findings using real high- dimensional data from different domains (documents, images, etc) and with different characteristics. 2013-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/1624 info:doi/10.14778/2535568.2448941 https://ink.library.smu.edu.sg/context/sis_research/article/2623/viewcontent/p73_mouratidis_pv.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Corresponding weights Different domains High dimensional data High-dimensional dataset Preference functions Pruning techniques Resource-efficient User's preferences Databases and Information Systems Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Corresponding weights Different domains High dimensional data High-dimensional dataset Preference functions Pruning techniques Resource-efficient User's preferences Databases and Information Systems Numerical Analysis and Scientific Computing |
spellingShingle |
Corresponding weights Different domains High dimensional data High-dimensional dataset Preference functions Pruning techniques Resource-efficient User's preferences Databases and Information Systems Numerical Analysis and Scientific Computing MOURATIDIS, Kyriakos PANG, Hwee Hwa Computing Immutable Regions for Subspace Top-k Queries |
description |
Given a high-dimensional dataset, a top-k query can be used to shortlist the k tuples that best match the user’s preferences. Typically, these preferences regard a subset of the available dimensions (i.e., attributes) whose relative significance is expressed by user-specified weights. Along with the query result, we propose to compute for each involved dimension the maximal deviation to the corresponding weight for which the query result remains valid. The derived weight ranges, called immutable regions, are useful for performing sensitivity analysis, for finetuning the query weights, etc. In this paper, we focus on top-k queries with linear preference functions over the queried dimensions. We codify the conditions under which changes in a dimension’s weight invalidate the query result, and develop algorithms to compute the immutable regions. In general, this entails the examination of numerous non-result tuples. To reduce processing time, we introduce a pruning technique and a thresholding mechanism that allow the immutable regions to be determined correctly after examining only a small number of non-result tuples. We demonstrate empirically that the two techniques combine well to form a robust and highly resource-efficient algorithm. We verify the generality of our findings using real high- dimensional data from different domains (documents, images, etc) and with different characteristics. |
format |
text |
author |
MOURATIDIS, Kyriakos PANG, Hwee Hwa |
author_facet |
MOURATIDIS, Kyriakos PANG, Hwee Hwa |
author_sort |
MOURATIDIS, Kyriakos |
title |
Computing Immutable Regions for Subspace Top-k Queries |
title_short |
Computing Immutable Regions for Subspace Top-k Queries |
title_full |
Computing Immutable Regions for Subspace Top-k Queries |
title_fullStr |
Computing Immutable Regions for Subspace Top-k Queries |
title_full_unstemmed |
Computing Immutable Regions for Subspace Top-k Queries |
title_sort |
computing immutable regions for subspace top-k queries |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2013 |
url |
https://ink.library.smu.edu.sg/sis_research/1624 https://ink.library.smu.edu.sg/context/sis_research/article/2623/viewcontent/p73_mouratidis_pv.pdf |
_version_ |
1770571354101252096 |