Fast and accurate PSD matrix estimation by row reduction
Fast and accurate estimation of missing relations, e.g., similarity, distance and kernel, among objects is now one of the most important techniques required by major data mining tasks, because the missing information of the relations is needed in many applications such as economics, psychology, and...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2012
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1694 https://ink.library.smu.edu.sg/context/sis_research/article/2693/viewcontent/Fast_and_Accurate_PSD_Matrix_Estimation_by_Row_Reduction.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-2693 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-26932018-06-18T05:18:08Z Fast and accurate PSD matrix estimation by row reduction KUWAJIMA, Hiroshi WASHIO, Takashi LIM, Ee Peng Fast and accurate estimation of missing relations, e.g., similarity, distance and kernel, among objects is now one of the most important techniques required by major data mining tasks, because the missing information of the relations is needed in many applications such as economics, psychology, and social network communities. Though some approaches have been proposed in the last several years, the practical balance between their required computation amount and obtained accuracy are insufficient for some class of the relation estimation. The objective of this paper is to formalize a problem to quickly and efficiently estimate missing relations among objects from the other known relations among the objects and to propose techniques called “PSD Estimation” and “Row Reduction” for the estimation problem. This technique uses a characteristic of the relations named “Positive Semi-Definiteness (PSD)” and a special assumption for known relations in a matrix. The superior performance of our approach in both efficiency and accuracy is demonstrated through an evaluation based on artificial and real-world data sets. 2012-11-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/1694 info:doi/10.1587/transinf.E95.D.2599 https://ink.library.smu.edu.sg/context/sis_research/article/2693/viewcontent/Fast_and_Accurate_PSD_Matrix_Estimation_by_Row_Reduction.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Similarity Positive Semi-Definite (PSD) matrix Positive Semi-Definite (PSD) Estimation Row reduction Incomplete Cholesky decomposition Databases and Information Systems Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Similarity Positive Semi-Definite (PSD) matrix Positive Semi-Definite (PSD) Estimation Row reduction Incomplete Cholesky decomposition Databases and Information Systems Numerical Analysis and Scientific Computing |
spellingShingle |
Similarity Positive Semi-Definite (PSD) matrix Positive Semi-Definite (PSD) Estimation Row reduction Incomplete Cholesky decomposition Databases and Information Systems Numerical Analysis and Scientific Computing KUWAJIMA, Hiroshi WASHIO, Takashi LIM, Ee Peng Fast and accurate PSD matrix estimation by row reduction |
description |
Fast and accurate estimation of missing relations, e.g., similarity, distance and kernel, among objects is now one of the most important techniques required by major data mining tasks, because the missing information of the relations is needed in many applications such as economics, psychology, and social network communities. Though some approaches have been proposed in the last several years, the practical balance between their required computation amount and obtained accuracy are insufficient for some class of the relation estimation. The objective of this paper is to formalize a problem to quickly and efficiently estimate missing relations among objects from the other known relations among the objects and to propose techniques called “PSD Estimation” and “Row Reduction” for the estimation problem. This technique uses a characteristic of the relations named “Positive Semi-Definiteness (PSD)” and a special assumption for known relations in a matrix. The superior performance of our approach in both efficiency and accuracy is demonstrated through an evaluation based on artificial and real-world data sets. |
format |
text |
author |
KUWAJIMA, Hiroshi WASHIO, Takashi LIM, Ee Peng |
author_facet |
KUWAJIMA, Hiroshi WASHIO, Takashi LIM, Ee Peng |
author_sort |
KUWAJIMA, Hiroshi |
title |
Fast and accurate PSD matrix estimation by row reduction |
title_short |
Fast and accurate PSD matrix estimation by row reduction |
title_full |
Fast and accurate PSD matrix estimation by row reduction |
title_fullStr |
Fast and accurate PSD matrix estimation by row reduction |
title_full_unstemmed |
Fast and accurate PSD matrix estimation by row reduction |
title_sort |
fast and accurate psd matrix estimation by row reduction |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2012 |
url |
https://ink.library.smu.edu.sg/sis_research/1694 https://ink.library.smu.edu.sg/context/sis_research/article/2693/viewcontent/Fast_and_Accurate_PSD_Matrix_Estimation_by_Row_Reduction.pdf |
_version_ |
1770571478741286912 |