Best Upgrade Plans for Large Road Networks
In this paper, we consider a new problem in the context of road network databases, named Resource Constrained Best Upgrade Plan computation (BUP, for short). Consider a transportation network (weighted graph) G where a subset of the edges are upgradable, i.e., for each such edge there is a cost, whi...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1823 https://ink.library.smu.edu.sg/context/sis_research/article/2822/viewcontent/SSTD13_BUP.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In this paper, we consider a new problem in the context of road network databases, named Resource Constrained Best Upgrade Plan computation (BUP, for short). Consider a transportation network (weighted graph) G where a subset of the edges are upgradable, i.e., for each such edge there is a cost, which if spent, the weight of the edge can be reduced to a specific new value. Given a source and a destination in G, and a budget (resource constraint) B, the BUP problem is to identify which upgradable edges should be upgraded so that the shortest path distance between source and destination (in the updated network) is minimized, without exceeding the available budget for the upgrade. In addition to transportation networks, the BUP query arises in other domains too, such as telecommunications. We propose a framework for BUP processing and evaluate it with experiments on large, real road networks. |
---|