Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining
In this paper we identify a major area of research as a topic for next generation data mining. The research effort in the last decade on privacy preserving data mining has resulted in the development of numerous algorithms. However, most of the existing research has not been applied in any particula...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2007
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1870 https://ink.library.smu.edu.sg/context/sis_research/article/2869/viewcontent/GuoZ2007MAhluwalia.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-2869 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-28692016-05-10T14:40:29Z Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining Ahluwalia, Madhu CHEN, Zhiyuan Gangopadhyay, Arrya GUO, Zhiling In this paper we identify a major area of research as a topic for next generation data mining. The research effort in the last decade on privacy preserving data mining has resulted in the development of numerous algorithms. However, most of the existing research has not been applied in any particular application context. Hence it is unclear whether the current algorithms are directly applicable in any particular problem context. In this paper we identify a significant application context that not only requires protection of privacy but also sophisticated data analysis. The area in question is supply chain management, arguably one of the most important research areas in production and operations management that has enormous practical relevance. We examine the area of supply chain management and identify research challenges and opportunities for privacy preserving data mining in the next generation. 2007-10-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/1870 https://ink.library.smu.edu.sg/context/sis_research/article/2869/viewcontent/GuoZ2007MAhluwalia.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Computer Sciences Management Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Computer Sciences Management Information Systems |
spellingShingle |
Computer Sciences Management Information Systems Ahluwalia, Madhu CHEN, Zhiyuan Gangopadhyay, Arrya GUO, Zhiling Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining |
description |
In this paper we identify a major area of research as a topic for next generation data mining. The research effort in the last decade on privacy preserving data mining has resulted in the development of numerous algorithms. However, most of the existing research has not been applied in any particular application context. Hence it is unclear whether the current algorithms are directly applicable in any particular problem context. In this paper we identify a significant application context that not only requires protection of privacy but also sophisticated data analysis. The area in question is supply chain management, arguably one of the most important research areas in production and operations management that has enormous practical relevance. We examine the area of supply chain management and identify research challenges and opportunities for privacy preserving data mining in the next generation. |
format |
text |
author |
Ahluwalia, Madhu CHEN, Zhiyuan Gangopadhyay, Arrya GUO, Zhiling |
author_facet |
Ahluwalia, Madhu CHEN, Zhiyuan Gangopadhyay, Arrya GUO, Zhiling |
author_sort |
Ahluwalia, Madhu |
title |
Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining |
title_short |
Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining |
title_full |
Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining |
title_fullStr |
Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining |
title_full_unstemmed |
Preserving Privacy in Supply Chain Management: A Challenge for Next Generation Data Mining |
title_sort |
preserving privacy in supply chain management: a challenge for next generation data mining |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2007 |
url |
https://ink.library.smu.edu.sg/sis_research/1870 https://ink.library.smu.edu.sg/context/sis_research/article/2869/viewcontent/GuoZ2007MAhluwalia.pdf |
_version_ |
1770571632385982464 |