Approximate Inference in Collective Graphical Models
We study the problem of approximate inference in collective graphical models (CGMs), which were recently introduced to model the problem of learning and inference with noisy aggregate observations. We first analyze the complexity of inference in CGMs: unlike inference in conventional graphical model...
محفوظ في:
المؤلفون الرئيسيون: | SHELDON, Daniel, SUN, Tao, KUMAR, Akshat, DIETTERICH, Thomas G. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/2199 https://ink.library.smu.edu.sg/context/sis_research/article/3199/viewcontent/sheldon13.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Message Passing for Collective Graphical Models
بواسطة: SUN, Tao, وآخرون
منشور في: (2015) -
Collective Diffusion Over Networks: Models and Inference
بواسطة: KUMAR, Akshat, وآخرون
منشور في: (2013) -
Approximate inference using DC programming for collective graphical models
بواسطة: NGUYEN, Duc Thien, وآخرون
منشور في: (2016) -
Influence Diagrams With Memory States: Representation and Algorithms
بواسطة: WU, Xiaojian, وآخرون
منشور في: (2011) -
ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for Document Information Extraction
بواسطة: HE, Jiabang, وآخرون
منشور في: (2023)