Modeling and Compressing 3-D Facial Expressions Using Geometry Videos

In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set...

全面介紹

Saved in:
書目詳細資料
Main Authors: XIA, Jiazhi, QUYNH, Dao T. P., HE, Ying, CHEN, Xiaoming, HOI, Steven C. H.
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2012
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/2276
https://ink.library.smu.edu.sg/context/sis_research/article/3276/viewcontent/Compressing3_D_Facial_2012.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:In this paper, we present a novel geometry video (GV) framework to model and compress 3-D facial expressions. GV bridges the gap of 3-D motion data and 2-D video, and provides a natural way to apply the well-studied video processing techniques to motion data processing. Our framework includes a set of algorithms to construct GVs, such as hole filling, geodesic-based face segmentation, expression-invariant parameterization (EIP), and GV compression. Our EIP algorithm can guarantee the exact correspondence of the salient features (eyes, mouth, and nose) in different frames, which leads to GVs with better spatial and temporal coherence than that of the conventional parameterization methods. By taking advantage of this feature, we also propose a new H.264/AVC-based progressive directional prediction scheme, which can provide further 10%-16% bitrate reductions compared to the original H.264/AVC applied for GV compression while maintaining good video quality. Our experimental results on real-world datasets demonstrate that GV is very effective for modeling the high-resolution 3-D expression data, thus providing an attractive way in expression information processing for gaming and movie industry.