Semantics-Preserving Bag-of-Words Models and Applications
The Bag-of-Words (BoW) model is a promising image representation technique for image categorization and annotation tasks. One critical limitation of existing BoW models is that much semantic information is lost during the codebook generation process, an important step of BoW. This is because the cod...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2010
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2309 https://ink.library.smu.edu.sg/context/sis_research/article/3309/viewcontent/TIP_05056_2009_SPBOW_1_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-3309 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-33092018-12-06T00:39:02Z Semantics-Preserving Bag-of-Words Models and Applications WU, Lei HOI, Steven C. H. YU, Nenghai The Bag-of-Words (BoW) model is a promising image representation technique for image categorization and annotation tasks. One critical limitation of existing BoW models is that much semantic information is lost during the codebook generation process, an important step of BoW. This is because the codebook generated by BoW is often obtained via building the codebook simply by clustering visual features in Euclidian space. However, visual features related to the same semantics may not distribute in clusters in the Euclidian space, which is primarily due to the semantic gap between low-level features and high-level semantics. In this paper, we propose a novel scheme to learn optimized BoW models, which aims to map semantically related features to the same visual words. In particular, we consider the distance between semantically identical features as a measurement of the semantic gap, and attempt to learn an optimized codebook by minimizing this gap, aiming to achieve the minimal loss of the semantics. We refer to such kind of novel codebook as semantics-preserving codebook (SPC) and the corresponding model as the Semantics-Preserving Bag-of-Words (SPBoW) model. Extensive experiments on image annotation and object detection tasks with public testbeds from MIT's Labelme and PASCAL VOC challenge databases show that the proposed SPC learning scheme is effective for optimizing the codebook generation process, and the SPBoW model is able to greatly enhance the performance of the existing BoW model. 2010-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/2309 info:doi/10.1109/TIP.2010.2045169 https://ink.library.smu.edu.sg/context/sis_research/article/3309/viewcontent/TIP_05056_2009_SPBOW_1_.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Image retrieval Research and development Image storage Image segmentation Image representation Loss measurement Particle measurements Object detection Testing Image databases Computer Sciences Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Image retrieval Research and development Image storage Image segmentation Image representation Loss measurement Particle measurements Object detection Testing Image databases Computer Sciences Databases and Information Systems |
spellingShingle |
Image retrieval Research and development Image storage Image segmentation Image representation Loss measurement Particle measurements Object detection Testing Image databases Computer Sciences Databases and Information Systems WU, Lei HOI, Steven C. H. YU, Nenghai Semantics-Preserving Bag-of-Words Models and Applications |
description |
The Bag-of-Words (BoW) model is a promising image representation technique for image categorization and annotation tasks. One critical limitation of existing BoW models is that much semantic information is lost during the codebook generation process, an important step of BoW. This is because the codebook generated by BoW is often obtained via building the codebook simply by clustering visual features in Euclidian space. However, visual features related to the same semantics may not distribute in clusters in the Euclidian space, which is primarily due to the semantic gap between low-level features and high-level semantics. In this paper, we propose a novel scheme to learn optimized BoW models, which aims to map semantically related features to the same visual words. In particular, we consider the distance between semantically identical features as a measurement of the semantic gap, and attempt to learn an optimized codebook by minimizing this gap, aiming to achieve the minimal loss of the semantics. We refer to such kind of novel codebook as semantics-preserving codebook (SPC) and the corresponding model as the Semantics-Preserving Bag-of-Words (SPBoW) model. Extensive experiments on image annotation and object detection tasks with public testbeds from MIT's Labelme and PASCAL VOC challenge databases show that the proposed SPC learning scheme is effective for optimizing the codebook generation process, and the SPBoW model is able to greatly enhance the performance of the existing BoW model. |
format |
text |
author |
WU, Lei HOI, Steven C. H. YU, Nenghai |
author_facet |
WU, Lei HOI, Steven C. H. YU, Nenghai |
author_sort |
WU, Lei |
title |
Semantics-Preserving Bag-of-Words Models and Applications |
title_short |
Semantics-Preserving Bag-of-Words Models and Applications |
title_full |
Semantics-Preserving Bag-of-Words Models and Applications |
title_fullStr |
Semantics-Preserving Bag-of-Words Models and Applications |
title_full_unstemmed |
Semantics-Preserving Bag-of-Words Models and Applications |
title_sort |
semantics-preserving bag-of-words models and applications |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2010 |
url |
https://ink.library.smu.edu.sg/sis_research/2309 https://ink.library.smu.edu.sg/context/sis_research/article/3309/viewcontent/TIP_05056_2009_SPBOW_1_.pdf |
_version_ |
1770572094187241472 |