A multimodal and multilevel ranking scheme for large-scale video retrieval

A critical issue of large-scale multimedia retrieval is how to develop an effective framework for ranking the search results. This problem is particularly challenging for content-based video retrieval due to some issues such as short text queries, insufficient sample learning, fusion of multimodal c...

全面介紹

Saved in:
書目詳細資料
Main Authors: HOI, Steven C. H., LYU, Michael R.
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2008
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/2313
https://ink.library.smu.edu.sg/context/sis_research/article/3313/viewcontent/Multimodal_MultilevelRankingScheme_2008.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:A critical issue of large-scale multimedia retrieval is how to develop an effective framework for ranking the search results. This problem is particularly challenging for content-based video retrieval due to some issues such as short text queries, insufficient sample learning, fusion of multimodal contents, and large-scale learning with huge media data. In this paper, we propose a novel multimodal and multilevel (MMML) ranking framework to attack the challenging ranking problem of content-based video retrieval. We represent the video retrieval task by graphs and suggest a graph based semi-supervised ranking (SSR) scheme, which can learn with small samples effectively and integrate multimodal resources for ranking smoothly. To make the semi-supervised ranking solution practical for large-scale retrieval tasks, we propose a multilevel ranking framework that unifies several different ranking approaches in a cascade fashion. We have conducted empirical evaluations of our proposed solution for automatic search tasks on the benchmark testbed of TRECVID2005. The promising empirical results show that our ranking solutions are effective and very competitive with the state-of-the-art solutions in the TRECVID evaluations.