Learning relative similarity by stochastic dual coordinate ascent
Learning relative similarity from pairwise instances is an important problem in machine learning and has a wide range of applications. Despite being studied for years, some existing methods solved by Stochastic Gradient Descent (SGD) techniques generally suffer from slow convergence. In this paper,...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/2321 https://ink.library.smu.edu.sg/context/sis_research/article/3321/viewcontent/8415_38543_1_PB.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |