When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go
Mobile devices are becoming ubiquitous. People use their phones as a personal concierge discovering and making decisions anywhere and anytime. Understanding user intent on the go therefore becomes important for task completion on the phone. While existing efforts have predominantly focused on unders...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2350 https://ink.library.smu.edu.sg/context/sis_research/article/3350/viewcontent/When_Recommendation_Meets_Mobile_Contextual_and_Personalised_Recommendation_On_The_Go.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-3350 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-33502016-01-14T10:01:13Z When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go ZHUANG, Jinfeng MEI, Tao HOI, Steven C. H. XU, Ying-Qing LI, Shipeng Mobile devices are becoming ubiquitous. People use their phones as a personal concierge discovering and making decisions anywhere and anytime. Understanding user intent on the go therefore becomes important for task completion on the phone. While existing efforts have predominantly focused on understanding the explicit user intent expressed by a textual or voice query, this paper presents an approach to context-aware and personalized entity recommendation which understands the implicit intent without any explicit user input on the phone. The approach, highly motivated from a large-scale mobile click-through analysis, is able to rank both the entity types and the entities within each type (here an entity is a local business, e.g., "I love sushi," while an entity type is a category, e.g., "restaurant"). The recommended entity types and entities are relevant to both user context (past behaviors) and sensor context (time and geo-location). Specifically, it estimates the generation probability of an entity by a given user conditioned on the current context in a probabilistic framework. A random-walk propagation is then employed to refine the estimated probability by mining the temporal patterns among entities. We deploy a recommendation application based on the proposed approach on Window Phone 7 devices. We evaluate recommendation performance on 10 thousand mobile clicks, as well as user experience through subjective user studies. We show that the application is effective to facilitate the exploration and discovery of surroundings for mobile users. 2011-09-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/2350 info:doi/10.1145/2030112.2030134 https://ink.library.smu.edu.sg/context/sis_research/article/3350/viewcontent/When_Recommendation_Meets_Mobile_Contextual_and_Personalised_Recommendation_On_The_Go.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Computer Sciences Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Computer Sciences Databases and Information Systems |
spellingShingle |
Computer Sciences Databases and Information Systems ZHUANG, Jinfeng MEI, Tao HOI, Steven C. H. XU, Ying-Qing LI, Shipeng When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go |
description |
Mobile devices are becoming ubiquitous. People use their phones as a personal concierge discovering and making decisions anywhere and anytime. Understanding user intent on the go therefore becomes important for task completion on the phone. While existing efforts have predominantly focused on understanding the explicit user intent expressed by a textual or voice query, this paper presents an approach to context-aware and personalized entity recommendation which understands the implicit intent without any explicit user input on the phone. The approach, highly motivated from a large-scale mobile click-through analysis, is able to rank both the entity types and the entities within each type (here an entity is a local business, e.g., "I love sushi," while an entity type is a category, e.g., "restaurant"). The recommended entity types and entities are relevant to both user context (past behaviors) and sensor context (time and geo-location). Specifically, it estimates the generation probability of an entity by a given user conditioned on the current context in a probabilistic framework. A random-walk propagation is then employed to refine the estimated probability by mining the temporal patterns among entities. We deploy a recommendation application based on the proposed approach on Window Phone 7 devices. We evaluate recommendation performance on 10 thousand mobile clicks, as well as user experience through subjective user studies. We show that the application is effective to facilitate the exploration and discovery of surroundings for mobile users. |
format |
text |
author |
ZHUANG, Jinfeng MEI, Tao HOI, Steven C. H. XU, Ying-Qing LI, Shipeng |
author_facet |
ZHUANG, Jinfeng MEI, Tao HOI, Steven C. H. XU, Ying-Qing LI, Shipeng |
author_sort |
ZHUANG, Jinfeng |
title |
When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go |
title_short |
When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go |
title_full |
When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go |
title_fullStr |
When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go |
title_full_unstemmed |
When Recommendation Meets Mobile: Contextual and Personalised Recommendation on the Go |
title_sort |
when recommendation meets mobile: contextual and personalised recommendation on the go |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2011 |
url |
https://ink.library.smu.edu.sg/sis_research/2350 https://ink.library.smu.edu.sg/context/sis_research/article/3350/viewcontent/When_Recommendation_Meets_Mobile_Contextual_and_Personalised_Recommendation_On_The_Go.pdf |
_version_ |
1770572107227332608 |