Learning Bregman Distance Functions and its Application for Semi-Supervised Clustering
Learning distance functions with side information plays a key role in many machine learning and data mining applications. Conventional approaches often assume a Mahalanobis distance function. These approaches are limited in two aspects: (i) they are computationally expensive (even infeasible) for hi...
Saved in:
Main Authors: | WU, Lei, JIN, Rong, HOI, Steven C. H., ZHU, Jianke, YU, Nenghai |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2009
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/2368 https://ink.library.smu.edu.sg/context/sis_research/article/3368/viewcontent/NIPS09_Bregman_CR_jin.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Learning Bregman distance functions for semi-supervised clustering
由: Wu, Lei., et al.
出版: (2013) -
Learning Bregman distance functions for semi-supervised clustering
由: Wu, Lei, et al.
出版: (2012) -
Semi-supervised distance metric learning for collaborative image retrieval and clustering
由: HOI, Steven C. H., et al.
出版: (2010) -
Semi-supervised ensemble ranking
由: HOI, Steven C. H., et al.
出版: (2008) -
Semi-supervised SVM batch mode active learning for image retrieval
由: HOI, Steven, et al.
出版: (2008)