Unsupervised Face Alignment by Robust Nonrigid Mapping
We propose a novel approach to unsupervised facial image alignment. Differently from previous approaches, that are confined to affine transformations on either the entire face or separate patches, we extract a nonrigid mapping between facial images. Based on a regularized face model, we frame unsupe...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2009
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2371 https://ink.library.smu.edu.sg/context/sis_research/article/3371/viewcontent/zhu_iccv09.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We propose a novel approach to unsupervised facial image alignment. Differently from previous approaches, that are confined to affine transformations on either the entire face or separate patches, we extract a nonrigid mapping between facial images. Based on a regularized face model, we frame unsupervised face alignment into the Lucas-Kanade image registration approach. We propose a robust optimization scheme to handle appearance variations. The method is fully automatic and can cope with pose variations and expressions, all in an unsupervised manner. Experiments on a large set of images showed that the approach is effective. |
---|