An effective approach to 3D deformable surface tracking

The key challenge with 3D deformable surface tracking arises from the difficulty in estimating a large number of 3D shape parameters from noisy observations. A recent state-of-the-art approach attacks this problem by formulating it as a Second Order Cone Programming (SOCP) feasibility problem. The m...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHU, Jianke, HOI, Steven C. H., XU, Zenglin, LYU, Michael R.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2008
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/2378
https://ink.library.smu.edu.sg/context/sis_research/article/3378/viewcontent/eccv08.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:The key challenge with 3D deformable surface tracking arises from the difficulty in estimating a large number of 3D shape parameters from noisy observations. A recent state-of-the-art approach attacks this problem by formulating it as a Second Order Cone Programming (SOCP) feasibility problem. The main drawback of this solution is the high computational cost. In this paper, we first reformulate the problem into an unconstrained quadratic optimization problem. Instead of handling a large set of complicated SOCP constraints, our new formulation can be solved very efficiently by resolving a set of sparse linear equations. Based on the new framework, a robust iterative method is employed to handle large outliers. We have conducted an extensive set of experiments to evaluate the performance on both synthetic and real-world testbeds, from which the promising results show that the proposed algorithm not only achieves better tracking accuracy, but also executes significantly faster than the previous solution.