A Multi-Scale Tikhonov Regularization Scheme for Implicit Surface Modeling
Kernel machines have recently been considered as a promising solution for implicit surface modelling. A key challenge of machine learning solutions is how to fit implicit shape models from large-scale sets of point cloud samples efficiently. In this paper, we propose a fast solution for approximatin...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2007
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2385 https://ink.library.smu.edu.sg/context/sis_research/article/3385/viewcontent/Multi_scale_Tikhonov_regularization_scheme_2007_afv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Kernel machines have recently been considered as a promising solution for implicit surface modelling. A key challenge of machine learning solutions is how to fit implicit shape models from large-scale sets of point cloud samples efficiently. In this paper, we propose a fast solution for approximating implicit surfaces based on a multi-scale Tikhonov regularization scheme. The optimization of our scheme is formulated into a sparse linear equation system, which can be efficiently solved by factorization methods. Different from traditional approaches, our scheme does not employ auxiliary off-surface points, which not only saves the computational cost but also avoids the problem of injected noise. To further speedup our solution, we present a multi-scale surface fitting algorithm of coarse to fine modelling. We conduct comprehensive experiments to evaluate the performance of our solution on a number of datasets of different scales. The promising results show that our suggested scheme is considerably more efficient than the state-of-the-art approach. |
---|