The Effects of Multiple Query Evidences on Social Image Retrieval
System performance assessment and comparison are fundamental for large-scale image search engine development. This article documents a set of comprehensive empirical studies to explore the effects of multiple query evidences on large-scale social image search. The search performance based on the soc...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2456 https://ink.library.smu.edu.sg/context/sis_research/article/3455/viewcontent/EffectsMultipleQueyEvidencesIR_2016_MS.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | System performance assessment and comparison are fundamental for large-scale image search engine development. This article documents a set of comprehensive empirical studies to explore the effects of multiple query evidences on large-scale social image search. The search performance based on the social tags, different kinds of visual features and their combinations are systematically studied and analyzed. To quantify the visual query complexity, a novel quantitative metric is proposed and applied to assess the influences of different visual queries based on their complexity levels. Besides, we also study the effects of automatic text query expansion with social tags using a pseudo relevance feedback method on the retrieval performance. Our analysis of experimental results shows a few key research findings: (1) social tag-based retrieval methods can achieve much better results than content-based retrieval methods; (2) a combination of textual and visual features can significantly and consistently improve the search performance; (3) the complexity of image queries has a strong correlation with retrieval results’ quality— more complex queries lead to poorer search effectiveness; and (4) query expansion based on social tags frequently causes search topic drift and consequently leads to performance degradation. |
---|