Accurate Online Video Tagging via Probabilistic Hybrid Modeling
Accurate video tagging has been becoming increasingly crucial for online video management and search. This article documents a novel framework called comprehensive video tagger (CVTagger) to facilitate accurate tag-based video annotation. The system applies both multimodal and temporal properties co...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2457 https://ink.library.smu.edu.sg/context/sis_research/article/3456/viewcontent/CVTagger_MMS_2016_pp.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Accurate video tagging has been becoming increasingly crucial for online video management and search. This article documents a novel framework called comprehensive video tagger (CVTagger) to facilitate accurate tag-based video annotation. The system applies both multimodal and temporal properties combined with a novel classification framework with hierarchical structure based on multilayer concept model and regression analysis. The advanced architecture enables effective incorporation of both video concept dependency and temporal dynamics. Using a large-scale test collection containing 50,000 YouTube videos, a set of empirical studies have been carried out and experimental results demonstrate various advantages of CVTagger over the state-of-the-art techniques. |
---|