Detecting flow anomalies in distributed systems
Deep within the networks of distributed systems, one often finds anomalies that affect their efficiency and performance. These anomalies are difficult to detect because the distributed systems may not have sufficient sensors to monitor the flow of traffic within the interconnected nodes of the netwo...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2014
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2622 https://ink.library.smu.edu.sg/context/sis_research/article/3622/viewcontent/1407.6064.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-3622 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-36222018-06-22T04:11:13Z Detecting flow anomalies in distributed systems CHUA, Freddy Chong-Tat LIM, Ee Peng HUBERMAN, Bernardo Deep within the networks of distributed systems, one often finds anomalies that affect their efficiency and performance. These anomalies are difficult to detect because the distributed systems may not have sufficient sensors to monitor the flow of traffic within the interconnected nodes of the networks. Without early detection and making corrections, these anomalies may aggravate over time and could possibly cause disastrous outcomes in the system in the unforeseeable future. Using only coarse-grained information from the two end points of network flows, we propose a network transmission model and a localization algorithm, to detect the location of anomalies and rank them using a proposed metric within distributed systems. We evaluate our approach on passengers' records of an urbanized city's public transportation system and correlate our findings with passengers' postings on social media micro blogs. Our experiments show that the metric derived using our localization algorithm gives a better ranking of anomalies as compared to standard deviation measures from statistical models. Our case studies also demonstrate that transportation events reported in social media micro blogs matches the locations of our detect anomalies, suggesting that our algorithm performs well in locating the anomalies within distributed systems. 2014-12-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/2622 info:doi/10.1109/ICDM.2014.94 https://ink.library.smu.edu.sg/context/sis_research/article/3622/viewcontent/1407.6064.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Computer Sciences Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Computer Sciences Databases and Information Systems |
spellingShingle |
Computer Sciences Databases and Information Systems CHUA, Freddy Chong-Tat LIM, Ee Peng HUBERMAN, Bernardo Detecting flow anomalies in distributed systems |
description |
Deep within the networks of distributed systems, one often finds anomalies that affect their efficiency and performance. These anomalies are difficult to detect because the distributed systems may not have sufficient sensors to monitor the flow of traffic within the interconnected nodes of the networks. Without early detection and making corrections, these anomalies may aggravate over time and could possibly cause disastrous outcomes in the system in the unforeseeable future. Using only coarse-grained information from the two end points of network flows, we propose a network transmission model and a localization algorithm, to detect the location of anomalies and rank them using a proposed metric within distributed systems. We evaluate our approach on passengers' records of an urbanized city's public transportation system and correlate our findings with passengers' postings on social media micro blogs. Our experiments show that the metric derived using our localization algorithm gives a better ranking of anomalies as compared to standard deviation measures from statistical models. Our case studies also demonstrate that transportation events reported in social media micro blogs matches the locations of our detect anomalies, suggesting that our algorithm performs well in locating the anomalies within distributed systems. |
format |
text |
author |
CHUA, Freddy Chong-Tat LIM, Ee Peng HUBERMAN, Bernardo |
author_facet |
CHUA, Freddy Chong-Tat LIM, Ee Peng HUBERMAN, Bernardo |
author_sort |
CHUA, Freddy Chong-Tat |
title |
Detecting flow anomalies in distributed systems |
title_short |
Detecting flow anomalies in distributed systems |
title_full |
Detecting flow anomalies in distributed systems |
title_fullStr |
Detecting flow anomalies in distributed systems |
title_full_unstemmed |
Detecting flow anomalies in distributed systems |
title_sort |
detecting flow anomalies in distributed systems |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2014 |
url |
https://ink.library.smu.edu.sg/sis_research/2622 https://ink.library.smu.edu.sg/context/sis_research/article/3622/viewcontent/1407.6064.pdf |
_version_ |
1770572527479816192 |