Message Passing for Collective Graphical Models

Collective graphical models (CGMs) are a formalism for inference and learning about a population of independent and identically distributed individuals when only noisy aggregate data are available. We highlight a close connection between approximate MAP inference in CGMs and marginal inference in st...

Full description

Saved in:
Bibliographic Details
Main Authors: SUN, Tao, SHELDON, Daniel, KUMAR, Akshat
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2015
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/2914
https://ink.library.smu.edu.sg/context/sis_research/article/3914/viewcontent/MessagePassingCollectiveGraphicalModels_2015_ICML.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Collective graphical models (CGMs) are a formalism for inference and learning about a population of independent and identically distributed individuals when only noisy aggregate data are available. We highlight a close connection between approximate MAP inference in CGMs and marginal inference in standard graphical models. The connection leads us to derive a novel Belief Propagation (BP) style algorithm for collective graphical models. Mathematically, the algorithm is a strict generalization of BP—it can be viewed as an extension to minimize the Bethe free energy plus additional energy terms that are non-linear functions of the marginals. For CGMs, the algorithm is much more efficient than previous approaches to inference. We demonstrate its performance on two synthetic experiments concerning bird migration and collective human mobility.