SOLAR: Scalable Online Learning Algorithms for Ranking

Traditional learning to rank methods learn ranking models from training data in a batch and offline learning mode, which suffers from some critical limitations, e.g., poor scalability as the model has to be retrained from scratch whenever new training data arrives. This is clearly nonscalable for ma...

全面介紹

Saved in:
書目詳細資料
Main Authors: WANG, Jialei, WAN, Ji, ZHANG, Yongdong, HOI, Steven C. H.
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2015
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/2970
https://ink.library.smu.edu.sg/context/sis_research/article/3970/viewcontent/P15_1163.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Traditional learning to rank methods learn ranking models from training data in a batch and offline learning mode, which suffers from some critical limitations, e.g., poor scalability as the model has to be retrained from scratch whenever new training data arrives. This is clearly nonscalable for many real applications in practice where training data often arrives sequentially and frequently. To overcome the limitations, this paper presents SOLAR- a new framework of Scalable Online Learning Algorithms for Ranking, to tackle the challenge of scalable learning to rank. Specifically, we propose two novel SOLAR algorithms and analyze their IR measure bounds theoretically. We conduct extensive empirical studies by comparing our SOLAR algorithms with conventional learning to rank algorithms on benchmark testbeds, in which promising results validate the efficacy and scalability of the proposed novel SOLAR algorithms.