Moving average reversion strategy for on-line portfolio selection
On-line portfolio selection, a fundamental problem in computational finance, has attracted increasing interest from artificial intelligence and machine learning communities in recent years. Empirical evidence shows that stock's high and low prices are temporary and stock prices are likely to fo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2015
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2971 https://ink.library.smu.edu.sg/context/sis_research/article/3971/viewcontent/Moving_Aver_Rev_2015.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-3971 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-39712020-04-01T02:12:39Z Moving average reversion strategy for on-line portfolio selection LI, Bin HOI, Steven C. H. SAHOO, Doyen LIU, Zhi-Yong On-line portfolio selection, a fundamental problem in computational finance, has attracted increasing interest from artificial intelligence and machine learning communities in recent years. Empirical evidence shows that stock's high and low prices are temporary and stock prices are likely to follow the mean reversion phenomenon. While existing mean reversion strategies are shown to achieve good empirical performance on many real datasets, they often make the single-period mean reversion assumption, which is not always satisfied, leading to poor performance in certain real datasets. To overcome this limitation, this article proposes a multiple-period mean reversion, or so-called "Moving Average Reversion" (MAR), and a new on-line portfolio selection strategy named "On-Line Moving Average Reversion" (OLMAR), which exploits MAR via efficient and scalable online machine learning techniques. From our empirical results on real markets, we found that OLMAR can overcome the drawbacks of existing mean reversion algorithms and achieve significantly better results, especially on the datasets where existing mean reversion algorithms failed. In addition to its superior empirical performance, OLMAR also runs extremely fast, further supporting its practical applicability to a wide range of applications. Finally, we have made all the datasets and source codes of this work publicly available at our project website: http://OLPS.stevenhoi.org/. 2015-05-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/2971 info:doi/10.1016/j.artint.2015.01.006 https://ink.library.smu.edu.sg/context/sis_research/article/3971/viewcontent/Moving_Aver_Rev_2015.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Mean reversion Moving average reversion On-line learning Portfolio selection Computer Sciences Databases and Information Systems Finance and Financial Management Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Mean reversion Moving average reversion On-line learning Portfolio selection Computer Sciences Databases and Information Systems Finance and Financial Management Numerical Analysis and Scientific Computing |
spellingShingle |
Mean reversion Moving average reversion On-line learning Portfolio selection Computer Sciences Databases and Information Systems Finance and Financial Management Numerical Analysis and Scientific Computing LI, Bin HOI, Steven C. H. SAHOO, Doyen LIU, Zhi-Yong Moving average reversion strategy for on-line portfolio selection |
description |
On-line portfolio selection, a fundamental problem in computational finance, has attracted increasing interest from artificial intelligence and machine learning communities in recent years. Empirical evidence shows that stock's high and low prices are temporary and stock prices are likely to follow the mean reversion phenomenon. While existing mean reversion strategies are shown to achieve good empirical performance on many real datasets, they often make the single-period mean reversion assumption, which is not always satisfied, leading to poor performance in certain real datasets. To overcome this limitation, this article proposes a multiple-period mean reversion, or so-called "Moving Average Reversion" (MAR), and a new on-line portfolio selection strategy named "On-Line Moving Average Reversion" (OLMAR), which exploits MAR via efficient and scalable online machine learning techniques. From our empirical results on real markets, we found that OLMAR can overcome the drawbacks of existing mean reversion algorithms and achieve significantly better results, especially on the datasets where existing mean reversion algorithms failed. In addition to its superior empirical performance, OLMAR also runs extremely fast, further supporting its practical applicability to a wide range of applications. Finally, we have made all the datasets and source codes of this work publicly available at our project website: http://OLPS.stevenhoi.org/. |
format |
text |
author |
LI, Bin HOI, Steven C. H. SAHOO, Doyen LIU, Zhi-Yong |
author_facet |
LI, Bin HOI, Steven C. H. SAHOO, Doyen LIU, Zhi-Yong |
author_sort |
LI, Bin |
title |
Moving average reversion strategy for on-line portfolio selection |
title_short |
Moving average reversion strategy for on-line portfolio selection |
title_full |
Moving average reversion strategy for on-line portfolio selection |
title_fullStr |
Moving average reversion strategy for on-line portfolio selection |
title_full_unstemmed |
Moving average reversion strategy for on-line portfolio selection |
title_sort |
moving average reversion strategy for on-line portfolio selection |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2015 |
url |
https://ink.library.smu.edu.sg/sis_research/2971 https://ink.library.smu.edu.sg/context/sis_research/article/3971/viewcontent/Moving_Aver_Rev_2015.pdf |
_version_ |
1770572760929533952 |