Active learning for causal bayesian network structure with non-symmetrical entropy
Causal knowledge is crucial for facilitating comprehension, diagnosis, prediction, and control in automated reasoning. Active learning in causal Bayesian networks involves interventions by manipulating specific variables, and observing the patterns of change over other variables to derive causal kno...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2009
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2983 https://ink.library.smu.edu.sg/context/sis_research/article/3983/viewcontent/PAKDD09.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-3983 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-39832018-07-13T04:33:48Z Active learning for causal bayesian network structure with non-symmetrical entropy Li G., Tze-Yun LEONG, Causal knowledge is crucial for facilitating comprehension, diagnosis, prediction, and control in automated reasoning. Active learning in causal Bayesian networks involves interventions by manipulating specific variables, and observing the patterns of change over other variables to derive causal knowledge. In this paper, we propose a new active learning approach that supports interventions with node selection. Our method admits a node selection criterion based on non-symmetrical entropy from the current data and a stop criterion based on structure entropy of the resulting networks. We examine the technical challenges and practical issues involved. Experimental results on a set of benchmark Bayesian networks are promising. The proposed method is potentially useful in many real-life applications where multiple instances are collected as a data set in each active learning step. © Springer-Verlag Berlin Heidelberg 2009. 2009-07-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/2983 info:doi/10.1007/978-3-642-01307-2_28 https://ink.library.smu.edu.sg/context/sis_research/article/3983/viewcontent/PAKDD09.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Active learning Bayesian networks Intervention Node selection Non-symmetrical entropy Stop criterion Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Active learning Bayesian networks Intervention Node selection Non-symmetrical entropy Stop criterion Databases and Information Systems |
spellingShingle |
Active learning Bayesian networks Intervention Node selection Non-symmetrical entropy Stop criterion Databases and Information Systems Li G., Tze-Yun LEONG, Active learning for causal bayesian network structure with non-symmetrical entropy |
description |
Causal knowledge is crucial for facilitating comprehension, diagnosis, prediction, and control in automated reasoning. Active learning in causal Bayesian networks involves interventions by manipulating specific variables, and observing the patterns of change over other variables to derive causal knowledge. In this paper, we propose a new active learning approach that supports interventions with node selection. Our method admits a node selection criterion based on non-symmetrical entropy from the current data and a stop criterion based on structure entropy of the resulting networks. We examine the technical challenges and practical issues involved. Experimental results on a set of benchmark Bayesian networks are promising. The proposed method is potentially useful in many real-life applications where multiple instances are collected as a data set in each active learning step. © Springer-Verlag Berlin Heidelberg 2009. |
format |
text |
author |
Li G., Tze-Yun LEONG, |
author_facet |
Li G., Tze-Yun LEONG, |
author_sort |
Li G., |
title |
Active learning for causal bayesian network structure with non-symmetrical entropy |
title_short |
Active learning for causal bayesian network structure with non-symmetrical entropy |
title_full |
Active learning for causal bayesian network structure with non-symmetrical entropy |
title_fullStr |
Active learning for causal bayesian network structure with non-symmetrical entropy |
title_full_unstemmed |
Active learning for causal bayesian network structure with non-symmetrical entropy |
title_sort |
active learning for causal bayesian network structure with non-symmetrical entropy |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2009 |
url |
https://ink.library.smu.edu.sg/sis_research/2983 https://ink.library.smu.edu.sg/context/sis_research/article/3983/viewcontent/PAKDD09.pdf |
_version_ |
1770572766345428992 |