Constructing influence views from data to support dynamic decision making in medicine

A dynamic decision model can facilitate the complicated decision-making process in medicine, in which both time and uncertainty are explicitly considered. In this paper, we address the problem of automatic construction of a dynamic decision model from a large medical database. Within the DynaMoL (a...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi X., Tze-Yun LEONG
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2001
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3008
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:A dynamic decision model can facilitate the complicated decision-making process in medicine, in which both time and uncertainty are explicitly considered. In this paper, we address the problem of automatic construction of a dynamic decision model from a large medical database. Within the DynaMoL (a dynamic decision modeling language) framework, a model can be represented in influence view. Thus, our proposed approach first learns the structures of the influence view based on the minimal description length (MDL) principle, and then obtains the conditional probabilities of the model by Bayesian method. The experiment results demonstrate that our system can efficiently construct the influence views from data with high fidelity.