Patient-specific inference and situation-dependent classification using Context-Sensitive Networks.
Representations and inferences that capture a formal notion of "context" are needed to effectively support various analytic and learning tasks in many biomedical applications. In this paper, we formulate patient-specific inference and situation-dependent classification as context-aware rea...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2006
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3031 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Representations and inferences that capture a formal notion of "context" are needed to effectively support various analytic and learning tasks in many biomedical applications. In this paper, we formulate patient-specific inference and situation-dependent classification as context-aware reasoning tasks that can be effectively supported in probabilistic graphical networks. We introduce a new probabilistic graphical framework of Context Sensitive Networks (CSNs) to efficiently represent and reason with context-sensitive knowledge. We illustrate how different types of inference in these networks can be handled in a context-dependent manner. We also demonstrate some promising evaluation results based on a set of real-life risk prediction and model classification problems in coronary heart disease. |
---|