Learning Conditional Probabilities for Dynamic Influence Structures in Medical Decision Models

Based on the DynaMoL (a Dynamic decision Modeling Language) framework, we examine the critical issues in automated learning of numerical parameters from large medical databases; present a Bayesian method for learning conditional probabilities from data; analyze how to elicit prior probabilities from...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: CAO, Cungen, Tze-Yun LEONG
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 1997
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/3060
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Based on the DynaMoL (a Dynamic decision Modeling Language) framework, we examine the critical issues in automated learning of numerical parameters from large medical databases; present a Bayesian method for learning conditional probabilities from data; analyze how to elicit prior probabilities from the domain expert; and examine several important issues on pre-processing raw data for application in dynamic decision modeling.