Evaluating Defect Prediction using a Massive Set of Metrics
To evaluate the performance of a within-project defect prediction approach, people normally use precision, recall, and F-measure scores. However, in machine learning literature, there are a large number of evaluation metrics to evaluate the performance of an algorithm, (e.g., Matthews Correlation Co...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2015
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3081 https://ink.library.smu.edu.sg/context/sis_research/article/4081/viewcontent/Defect_prediction_metrics_xuan_2015_afv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | To evaluate the performance of a within-project defect prediction approach, people normally use precision, recall, and F-measure scores. However, in machine learning literature, there are a large number of evaluation metrics to evaluate the performance of an algorithm, (e.g., Matthews Correlation Coefficient, G-means, etc.), and these metrics evaluate an approach from different aspects. In this paper, we investigate the performance of within-project defect prediction approaches on a large number of evaluation metrics. We choose 6 state-of-the-art approaches including naive Bayes, decision tree, logistic regression, kNN, random forest and Bayesian network which are widely used in defect prediction literature. And we evaluate these 6 approaches on 14 evaluation metrics (e.g., G-mean, F-measure, balance, MCC, J-coefficient, and AUC). Our goal is to explore a practical and sophisticated way for evaluating the prediction approaches comprehensively. We evaluate the performance of defect prediction approaches on 10 defect datasets from PROMISE repository. The results show that Bayesian network achieves a noteworthy performance. It achieves the best recall, FN-R, G-mean1 and balance on 9 out of the 10 datasets, and F-measure and J-coefficient on 7 out of the 10 datasets. |
---|