Integrated software fingerprinting via neural-network-based control flow obfuscation
Dynamic software fingerprinting has been an important tool in fighting against software theft and pirating by embedding unique fingerprints into software copies. However, existing work uses methods from dynamic software watermarking as direct solutions in which secret marks are inside rather indepen...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3180 https://ink.library.smu.edu.sg/context/sis_research/article/4181/viewcontent/tifs16.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-4181 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-41812017-03-31T08:07:00Z Integrated software fingerprinting via neural-network-based control flow obfuscation MA, Haoyu LI, Ruiqi YU, Xiaoxu JIA, Chunfu GAO, Debin Dynamic software fingerprinting has been an important tool in fighting against software theft and pirating by embedding unique fingerprints into software copies. However, existing work uses methods from dynamic software watermarking as direct solutions in which secret marks are inside rather independent code modules attached to the software. This results in an intrinsic weakness against targeted collusive attacks since differences among software copies correspond directly to the fingerprint-related components. In this paper, we suggest a novel mode of dynamic fingerprinting called integrated fingerprinting, of which the goal is to ensure all fingerprinted software copies possess identical behaviors at semantic level. We then provide the first implementation of integrated fingerprinting called Neuroprint on top of a control flow obfuscator that replaces program's conditional structures with neural networks trained to simulate their branching behaviors [1]. Leveraging the rich entropy in the outputs of these neural networks, Neuroprint embeds software fingerprints such that a one-time construction of the networks serves both purposes of obfuscation and fingerprinting. Evaluations show that due to the incomprehensibility of neural networks, it is infeasible to de-obfuscate the software transformed by Neuroprint or attack the fingerprint using even the latest program analysis techniques. Revealing information regarding the hidden fingerprints via collusive attacks on Neuroprint is difficult as well. Finally, Neuroprint also demonstrates negligible runtime overhead. 2016-10-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/3180 info:doi/10.1109/TIFS.2016.2555287 https://ink.library.smu.edu.sg/context/sis_research/article/4181/viewcontent/tifs16.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Software fingerprinting code obfuscation neural network Information Security Software Engineering |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Software fingerprinting code obfuscation neural network Information Security Software Engineering |
spellingShingle |
Software fingerprinting code obfuscation neural network Information Security Software Engineering MA, Haoyu LI, Ruiqi YU, Xiaoxu JIA, Chunfu GAO, Debin Integrated software fingerprinting via neural-network-based control flow obfuscation |
description |
Dynamic software fingerprinting has been an important tool in fighting against software theft and pirating by embedding unique fingerprints into software copies. However, existing work uses methods from dynamic software watermarking as direct solutions in which secret marks are inside rather independent code modules attached to the software. This results in an intrinsic weakness against targeted collusive attacks since differences among software copies correspond directly to the fingerprint-related components. In this paper, we suggest a novel mode of dynamic fingerprinting called integrated fingerprinting, of which the goal is to ensure all fingerprinted software copies possess identical behaviors at semantic level. We then provide the first implementation of integrated fingerprinting called Neuroprint on top of a control flow obfuscator that replaces program's conditional structures with neural networks trained to simulate their branching behaviors [1]. Leveraging the rich entropy in the outputs of these neural networks, Neuroprint embeds software fingerprints such that a one-time construction of the networks serves both purposes of obfuscation and fingerprinting. Evaluations show that due to the incomprehensibility of neural networks, it is infeasible to de-obfuscate the software transformed by Neuroprint or attack the fingerprint using even the latest program analysis techniques. Revealing information regarding the hidden fingerprints via collusive attacks on Neuroprint is difficult as well. Finally, Neuroprint also demonstrates negligible runtime overhead. |
format |
text |
author |
MA, Haoyu LI, Ruiqi YU, Xiaoxu JIA, Chunfu GAO, Debin |
author_facet |
MA, Haoyu LI, Ruiqi YU, Xiaoxu JIA, Chunfu GAO, Debin |
author_sort |
MA, Haoyu |
title |
Integrated software fingerprinting via neural-network-based control flow obfuscation |
title_short |
Integrated software fingerprinting via neural-network-based control flow obfuscation |
title_full |
Integrated software fingerprinting via neural-network-based control flow obfuscation |
title_fullStr |
Integrated software fingerprinting via neural-network-based control flow obfuscation |
title_full_unstemmed |
Integrated software fingerprinting via neural-network-based control flow obfuscation |
title_sort |
integrated software fingerprinting via neural-network-based control flow obfuscation |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2016 |
url |
https://ink.library.smu.edu.sg/sis_research/3180 https://ink.library.smu.edu.sg/context/sis_research/article/4181/viewcontent/tifs16.pdf |
_version_ |
1770572970790486016 |