Author topic model-based collaborative filtering for personalized POI recommendations
From social media has emerged continuous needs for automatic travel recommendations. Collaborative filtering (CF) is the most well-known approach. However, existing approaches generally suffer from various weaknesses. For example, sparsity can significantly degrade the performance of traditional CF....
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2015
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3198 https://ink.library.smu.edu.sg/context/sis_research/article/4199/viewcontent/AuthorTopicModelCollaborativePOI_2015.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | From social media has emerged continuous needs for automatic travel recommendations. Collaborative filtering (CF) is the most well-known approach. However, existing approaches generally suffer from various weaknesses. For example, sparsity can significantly degrade the performance of traditional CF. If a user only visits very few locations, accurate similar user identification becomes very challenging due to lack of sufficient information for effective inference. Moreover, existing recommendation approaches often ignore rich user information like textual descriptions of photos which can reflect users' travel preferences. The topic model (TM) method is an effective way to solve the "sparsity problem," but is still far from satisfactory. In this paper, an author topic model-based collaborative filtering (ATCF) method is proposed to facilitate comprehensive points of interest (POIs) recommendations for social users. In our approach, user preference topics, such as cultural, cityscape, or landmark, are extracted from the geo-tag constrained textual description of photos via the author topic model instead of only from the geo-tags (GPS locations). Advantages and superior performance of our approach are demonstrated by extensive experiments on a large collection of data. |
---|