Learning natural language inference with LSTM
Natural language inference (NLI) is a fundamentally important task in natural language processing that has many applications. The recently released Stanford Natural Language Inference (SNLI) corpus has made it possible to develop and evaluate learning-centered methods such as deep neural networks fo...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3434 https://ink.library.smu.edu.sg/context/sis_research/article/4435/viewcontent/naaclhlt2016__1_.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-4435 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-44352018-03-09T08:19:29Z Learning natural language inference with LSTM WANG, Shuohang JIANG, Jing Natural language inference (NLI) is a fundamentally important task in natural language processing that has many applications. The recently released Stanford Natural Language Inference (SNLI) corpus has made it possible to develop and evaluate learning-centered methods such as deep neural networks for natural language inference (NLI). In this paper, we propose a special long short-term memory (LSTM) architecture for NLI. Our model builds on top of a recently proposed neural attention model for NLI but is based on a significantly different idea. Instead of deriving sentence embeddings for the premise and the hypothesis to be used for classification, our solution uses a match-LSTM to perform word-by-word matching of the hypothesis with the premise. This LSTM is able to place more emphasis on important word-level matching results. In particular, we observe that this LSTM remembers important mismatches that are critical for predicting the contradiction or the neutral relationship label. On the SNLI corpus, our model achieves an accuracy of 86.1%, outperforming the state of the art. 2016-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/3434 info:doi/10.18653/v1/N16-1170 https://ink.library.smu.edu.sg/context/sis_research/article/4435/viewcontent/naaclhlt2016__1_.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Databases and Information Systems Systems Architecture |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems Systems Architecture |
spellingShingle |
Databases and Information Systems Systems Architecture WANG, Shuohang JIANG, Jing Learning natural language inference with LSTM |
description |
Natural language inference (NLI) is a fundamentally important task in natural language processing that has many applications. The recently released Stanford Natural Language Inference (SNLI) corpus has made it possible to develop and evaluate learning-centered methods such as deep neural networks for natural language inference (NLI). In this paper, we propose a special long short-term memory (LSTM) architecture for NLI. Our model builds on top of a recently proposed neural attention model for NLI but is based on a significantly different idea. Instead of deriving sentence embeddings for the premise and the hypothesis to be used for classification, our solution uses a match-LSTM to perform word-by-word matching of the hypothesis with the premise. This LSTM is able to place more emphasis on important word-level matching results. In particular, we observe that this LSTM remembers important mismatches that are critical for predicting the contradiction or the neutral relationship label. On the SNLI corpus, our model achieves an accuracy of 86.1%, outperforming the state of the art. |
format |
text |
author |
WANG, Shuohang JIANG, Jing |
author_facet |
WANG, Shuohang JIANG, Jing |
author_sort |
WANG, Shuohang |
title |
Learning natural language inference with LSTM |
title_short |
Learning natural language inference with LSTM |
title_full |
Learning natural language inference with LSTM |
title_fullStr |
Learning natural language inference with LSTM |
title_full_unstemmed |
Learning natural language inference with LSTM |
title_sort |
learning natural language inference with lstm |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2016 |
url |
https://ink.library.smu.edu.sg/sis_research/3434 https://ink.library.smu.edu.sg/context/sis_research/article/4435/viewcontent/naaclhlt2016__1_.pdf |
_version_ |
1770573201309433856 |