Cost sensitive online multiple kernel classification
Learning from data streams has been an important open research problem in the era of big data analytics. This paper investigates supervised machine learning techniques for mining data streams with application to online anomaly detection. Unlike conventional machine learning tasks, machine learning f...
Saved in:
Main Authors: | SAHOO, Doyen, ZHAO, Peilin, HOI, Steven C. H. |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2016
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/3442 https://ink.library.smu.edu.sg/context/sis_research/article/4443/viewcontent/Cost_sensitive_online_multiple_kernel_classification.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Online Multiple Kernel Classification
由: HOI, Steven C. H., et al.
出版: (2013) -
Online Multiple Kernel Regression
由: SAHOO, Doyen, et al.
出版: (2014) -
Sparse Passive-Aggressive learning for bounded online kernel methods
由: LU, Jing, et al.
出版: (2018) -
Large scale online multiple kernel regression with application to time-series prediction
由: SAHOO, Doyen, et al.
出版: (2019) -
Cost-sensitive online classification
由: WANG, Jialei, et al.
出版: (2012)