Adaptive collective routing using gaussian process dynamic congestion models

We consider the problem of adaptively routing a fleet of cooperative vehicles within a road network in the presence of uncertain and dynamic congestion conditions. To tackle this problem, we first propose a Gaussian Process Dynamic Congestion Model that can effectively characterize both the dynamics...

Full description

Saved in:
Bibliographic Details
Main Authors: LIU, Siyuan, YUE, Yisong, KRISHNAN, Ramayya
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2013
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3475
https://ink.library.smu.edu.sg/context/sis_research/article/4476/viewcontent/C66___Adaptive_Collective_Routing_Using_Gaussian_Process_Dynamic_Congestion_Models__KDD2013_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:We consider the problem of adaptively routing a fleet of cooperative vehicles within a road network in the presence of uncertain and dynamic congestion conditions. To tackle this problem, we first propose a Gaussian Process Dynamic Congestion Model that can effectively characterize both the dynamics and the uncertainty of congestion conditions. Our model is efficient and thus facilitates real-time adaptive routing in the face of uncertainty. Using this congestion model, we develop an efficient algorithm for non-myopic adaptive routing to minimize the collective travel time of all vehicles in the system. A key property of our approach is the ability to efficiently reason about the long-term value of exploration, which enables collectively balancing the exploration/exploitation trade-off for entire fleets of vehicles. We validate our approach based on traffic data from two large Asian cities. We show that our congestion model is effective in modeling dynamic congestion conditions. We also show that our routing algorithm generates significantly faster routes compared to standard baselines, and achieves near-optimal performance compared to an omniscient routing algorithm. We also present the results from a preliminary field study, which showcases the efficacy of our approach.