ShopProfiler: Profiling Shops with Crowdsourcing Data

Sensing data from mobile phones provide us exciting and profitable applications. Recent research focuses on sensing indoor environment, but suffers from inaccuracy because of the limited reachability of human traces or requires human intervention to perform sophisticated tasks. In this paper, we pre...

Full description

Saved in:
Bibliographic Details
Main Authors: GUO, Xiaonan, CHAN, Eddie C. L., LIU, Ce, WU, Kaishun, LIU, Siyuan, NI, Lionel
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2014
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3478
https://ink.library.smu.edu.sg/context/sis_research/article/4479/viewcontent/C98___ShopProfiler_Profiling_Shops_with_Crowdsourcing_Data__IEEE2014_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Sensing data from mobile phones provide us exciting and profitable applications. Recent research focuses on sensing indoor environment, but suffers from inaccuracy because of the limited reachability of human traces or requires human intervention to perform sophisticated tasks. In this paper, we present ShopProfiler, a shop profiling system on crowdsourcing data. First, we extract customer movement patterns from traces. Second, we improve accuracy of building floor plan by adopting a gradient-based approach and then localize shops through WiFi heat map. Third, we categorize shops by designing an SVM classifier in shop space to support multi-label classification. Finally, we infer brand name from SSID by applying string similarity measurement. Based on over five thousand traces in three big malls in two different countries, we conclude that ShopProfiler achieves better accuracy in building refined floor plan, and characterizes shops in terms of location, category and name with little human intervention.