Towards effective content-based music retrieval with multiple acoustic feature combination

In this paper, we present a new approach to constructing music descriptors to support efficient content-based music retrieval and classification. The system applies multiple musical properties combined with a hybrid architecture based on principal component analysis (PCA) and a multilayer perceptron...

Full description

Saved in:
Bibliographic Details
Main Authors: SHEN, Jialie, Shepherd, John, NGU, Ann H. H.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2006
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3546
https://ink.library.smu.edu.sg/context/sis_research/article/4547/viewcontent/EffContentBased_MusicRetrievalAcoustics_2006.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In this paper, we present a new approach to constructing music descriptors to support efficient content-based music retrieval and classification. The system applies multiple musical properties combined with a hybrid architecture based on principal component analysis (PCA) and a multilayer perceptron neural network. This architecture enables straightforward incorporation of multiple musical feature vectors, based on properties such as timbral texture, pitch, and rhythm structure, into a single low-dimensioned vector that is more effective for classification than the larger individual feature vectors. The use of supervised training enables incorporation of human musical perception that further enhances the classification process. We compare our approach with state of the art techniques and demonstrate its effectiveness on content-based music retrieval. In addition, extensive experimental study illustrates its effectiveness and robustness against various kinds of audio alteration.