Fine-grained appliance usage and energy monitoring through mobile and power-line sensing
To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3635 https://ink.library.smu.edu.sg/context/sis_research/article/4637/viewcontent/Journal_PMC16.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-4637 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-46372020-04-02T03:55:36Z Fine-grained appliance usage and energy monitoring through mobile and power-line sensing ROY, Nirmalya PATHAK, Nilavra MISRA, Archan To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with ~ 87% accuracy. 2016-08-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/3635 info:doi/10.1016/j.pmcj.2016.01.003 https://ink.library.smu.edu.sg/context/sis_research/article/4637/viewcontent/Journal_PMC16.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Energy Plug loads Green building Mobile applications Software Engineering |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Energy Plug loads Green building Mobile applications Software Engineering |
spellingShingle |
Energy Plug loads Green building Mobile applications Software Engineering ROY, Nirmalya PATHAK, Nilavra MISRA, Archan Fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
description |
To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with ~ 87% accuracy. |
format |
text |
author |
ROY, Nirmalya PATHAK, Nilavra MISRA, Archan |
author_facet |
ROY, Nirmalya PATHAK, Nilavra MISRA, Archan |
author_sort |
ROY, Nirmalya |
title |
Fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
title_short |
Fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
title_full |
Fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
title_fullStr |
Fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
title_full_unstemmed |
Fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
title_sort |
fine-grained appliance usage and energy monitoring through mobile and power-line sensing |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2016 |
url |
https://ink.library.smu.edu.sg/sis_research/3635 https://ink.library.smu.edu.sg/context/sis_research/article/4637/viewcontent/Journal_PMC16.pdf |
_version_ |
1770573367281188864 |