RACK: Code Search in the IDE Using Crowdsourced Knowledge

Traditional code search engines often do not perform well with natural language queries since they mostly apply keyword matching. These engines thus require carefully designed queries containing information about programming APIs for code search. Unfortunately, existing studies suggest that preparin...

Full description

Saved in:
Bibliographic Details
Main Authors: RAHMAN, Mohammad Masudur, ROY, Chanchal K., LO, David
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2017
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3698
https://ink.library.smu.edu.sg/context/sis_research/article/4700/viewcontent/1589a051.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Traditional code search engines often do not perform well with natural language queries since they mostly apply keyword matching. These engines thus require carefully designed queries containing information about programming APIs for code search. Unfortunately, existing studies suggest that preparing an effective query for code search is both challenging and time consuming for the developers. In this paper, we propose a novel code search tool-RACK-that returns relevant source code for a given code search query written in natural language text. The tool first translates the query into a list of relevant API classes by mining keyword-API associations from the crowdsourced knowledge of Stack Overflow, and then applies the reformulated query to GitHub code search API for collecting relevant results. Once a query related to a programming task is submitted, the tool automatically mines relevant code snippets from thousands of open-source projects, and displays them as a ranked list within the context of the developer's programming environment-the IDE. Tool page: http://www.usask.ca/~masud.rahman/rack.