Transaction cost optimization for online portfolio selection

To improve existing online portfolio selection strategies in the case of non-zero transaction costs, we propose a novel framework named Transaction Cost Optimization (TCO). The TCO framework incorporates the L1 norm of the difference between two consecutive allocations together with the principles o...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: LI, Bin, WANG, Jialei, HUANG, Dingjiang, HOI, Steven C. H.
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2017
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/3759
https://ink.library.smu.edu.sg/context/sis_research/article/4761/viewcontent/Transaction_cost_optimization_for_online_portfolio_selection.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:To improve existing online portfolio selection strategies in the case of non-zero transaction costs, we propose a novel framework named Transaction Cost Optimization (TCO). The TCO framework incorporates the L1 norm of the difference between two consecutive allocations together with the principles of maximizing expected log return. We further solve the formulation via convex optimization, and obtain two closed-form portfolio update formulas, which follow the same principle as Proportional Portfolio Rebalancing (PPR) in industry. We empirically evaluate the proposed framework using four commonly used data-sets. Although these data-sets do not consider delisted firms and are thus subject to survival bias, empirical evaluations show that the proposed TCO framework may effectively handle reasonable transaction costs and improve existing strategies in the case of non-zero transaction costs.