Large-scale online feature selection for ultra-high dimensional sparse data
Feature selection (FS) is an important technique in machine learning and data mining, especially for large scale high-dimensional data. Most existing studies have been restricted to batch learning, which is often inefficient and poorly scalable when handling big data in real world. As real data may...
محفوظ في:
المؤلفون الرئيسيون: | WU, Yue, HOI, Steven C. H., MEI, Tao, YU, Nenghai |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/3781 https://ink.library.smu.edu.sg/context/sis_research/article/4783/viewcontent/Large_Scale_Online_Feature_Selection_Ultra_high_2017_afv.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Feature Selection in High-Dimensional Studies
بواسطة: LUO SHAN
منشور في: (2012) -
Sparse sensor selection for distributed systems: an l1-relaxation approach
بواسطة: Zhong, Yuxing, وآخرون
منشور في: (2024) -
CORRELATION SCREENING AND FEATURE SELECTION FOR ULTRA-HIGH-DIMENSIONAL MODELS WITH COMPLEX STRUCTURES
بواسطة: GONG YUAN
منشور في: (2019) -
Can Peripheral Blood-Derived Gene Expressions Characterize Individuals at Ultra-high Risk for Psychosis?
بواسطة: Goh, Wilson Wen Bin, وآخرون
منشور في: (2023) -
Sparse Dimensionality Reduction Methods: Algorithms and Applications
بواسطة: ZHANG XIAOWEI
منشور في: (2013)