Local Gaussian processes for efficient fine-grained traffic speed prediction
Traffic speed is a key indicator for the efficiency of an urban transportation system. Accurate modeling of the spatiotemporally varying traffic speed thus plays a crucial role in urban planning and development. This paper addresses the problem of efficient fine-grained traffic speed prediction usin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2017
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3862 https://ink.library.smu.edu.sg/context/sis_research/article/4864/viewcontent/Local_Gaussian_Traffic_2017_afv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-4864 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-48642020-03-30T07:28:03Z Local Gaussian processes for efficient fine-grained traffic speed prediction LE, Truc Viet OENTARYO, Richard LIU, Siyuan LAU, Hoong Chuin Traffic speed is a key indicator for the efficiency of an urban transportation system. Accurate modeling of the spatiotemporally varying traffic speed thus plays a crucial role in urban planning and development. This paper addresses the problem of efficient fine-grained traffic speed prediction using big traffic data obtained from static sensors. Gaussian processes (GPs) have been previously used to model various traffic phenomena, including flow and speed. However, GPs do not scale with big traffic data due to their cubic time complexity. In this work, we address their efficiency issues by proposing localGPs to learn from and make predictions for correlated subsets of data. The main idea is to quickly group speed variables in both spatial and temporal dimensions into a finite number of clusters, so that future and unobserved traffic speed queries can be heuristically mapped to one of such clusters. A local GP corresponding to that cluster can then be trained on the fly to make predictions in real-time. We call this method localization. We use non-negative matrix factorization for localization and propose simple heuristics for cluster mapping. We additionally leverage on the expressiveness of GP kernel functions to model road network topology and incorporate side information. Extensive experiments using real-world traffic data collected in the two U.S. cities of Pittsburgh and Washington, D.C., show that our proposed local GPs significantly improve both runtime performances and prediction accuracies compared to the baseline global and local GPs. 2017-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/3862 info:doi/10.1109/TBDATA.2016.2620488 https://ink.library.smu.edu.sg/context/sis_research/article/4864/viewcontent/Local_Gaussian_Traffic_2017_afv.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Gaussian process matrix factorization spatiotemporal clustering traffic speed urban computing Artificial Intelligence and Robotics Computer Sciences Theory and Algorithms |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Gaussian process matrix factorization spatiotemporal clustering traffic speed urban computing Artificial Intelligence and Robotics Computer Sciences Theory and Algorithms |
spellingShingle |
Gaussian process matrix factorization spatiotemporal clustering traffic speed urban computing Artificial Intelligence and Robotics Computer Sciences Theory and Algorithms LE, Truc Viet OENTARYO, Richard LIU, Siyuan LAU, Hoong Chuin Local Gaussian processes for efficient fine-grained traffic speed prediction |
description |
Traffic speed is a key indicator for the efficiency of an urban transportation system. Accurate modeling of the spatiotemporally varying traffic speed thus plays a crucial role in urban planning and development. This paper addresses the problem of efficient fine-grained traffic speed prediction using big traffic data obtained from static sensors. Gaussian processes (GPs) have been previously used to model various traffic phenomena, including flow and speed. However, GPs do not scale with big traffic data due to their cubic time complexity. In this work, we address their efficiency issues by proposing localGPs to learn from and make predictions for correlated subsets of data. The main idea is to quickly group speed variables in both spatial and temporal dimensions into a finite number of clusters, so that future and unobserved traffic speed queries can be heuristically mapped to one of such clusters. A local GP corresponding to that cluster can then be trained on the fly to make predictions in real-time. We call this method localization. We use non-negative matrix factorization for localization and propose simple heuristics for cluster mapping. We additionally leverage on the expressiveness of GP kernel functions to model road network topology and incorporate side information. Extensive experiments using real-world traffic data collected in the two U.S. cities of Pittsburgh and Washington, D.C., show that our proposed local GPs significantly improve both runtime performances and prediction accuracies compared to the baseline global and local GPs. |
format |
text |
author |
LE, Truc Viet OENTARYO, Richard LIU, Siyuan LAU, Hoong Chuin |
author_facet |
LE, Truc Viet OENTARYO, Richard LIU, Siyuan LAU, Hoong Chuin |
author_sort |
LE, Truc Viet |
title |
Local Gaussian processes for efficient fine-grained traffic speed prediction |
title_short |
Local Gaussian processes for efficient fine-grained traffic speed prediction |
title_full |
Local Gaussian processes for efficient fine-grained traffic speed prediction |
title_fullStr |
Local Gaussian processes for efficient fine-grained traffic speed prediction |
title_full_unstemmed |
Local Gaussian processes for efficient fine-grained traffic speed prediction |
title_sort |
local gaussian processes for efficient fine-grained traffic speed prediction |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2017 |
url |
https://ink.library.smu.edu.sg/sis_research/3862 https://ink.library.smu.edu.sg/context/sis_research/article/4864/viewcontent/Local_Gaussian_Traffic_2017_afv.pdf |
_version_ |
1770573866498785280 |