Parallel personalized pagerank on dynamic graphs

Personalized PageRank (PPR) is a well-known proximitymeasure in graphs. To meet the need for dynamic PPRmaintenance, recent works have proposed a local updatescheme to support incremental computation. Nevertheless,sequential execution of the scheme is still too slow for highspeedstream processing. T...

全面介紹

Saved in:
書目詳細資料
Main Authors: GUO, Wentian, LI, Yuchen, TAN, Kian-Lee
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2017
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/3900
https://ink.library.smu.edu.sg/context/sis_research/article/4902/viewcontent/p93_guo.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Personalized PageRank (PPR) is a well-known proximitymeasure in graphs. To meet the need for dynamic PPRmaintenance, recent works have proposed a local updatescheme to support incremental computation. Nevertheless,sequential execution of the scheme is still too slow for highspeedstream processing. Therefore, we are motivated todesign a parallel approach for dynamic PPR computation.First, as updates always come in batches, we devise a batchprocessing method to reduce synchronization cost among everysingle update and enable more parallelism for iterativeparallel execution. Our theoretical analysis shows that theparallel approach has the same asymptotic complexity asthe sequential approach. Second, we devise novel optimizationtechniques to e↵ectively reduce runtime overheads forparallel processes. Experimental evaluation shows that ourparallel algorithm can achieve orders of magnitude speedupson GPUs and multi-core CPUs compared with the state-ofthe-artsequential algorithm.