Accelerating dynamic graph analytics on GPUs
As graph analytics often involves compute-intensive operations,GPUs have been extensively used to accelerate the processing. However, in many applications such as social networks, cyber security, and fraud detection, their representative graphs evolve frequently and one has to perform are build of t...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2017
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3905 https://ink.library.smu.edu.sg/context/sis_research/article/4907/viewcontent/p107_sha.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | As graph analytics often involves compute-intensive operations,GPUs have been extensively used to accelerate the processing. However, in many applications such as social networks, cyber security, and fraud detection, their representative graphs evolve frequently and one has to perform are build of the graph structure on GPUs to incorporate the updates. Hence, rebuilding the graphs becomes the bottleneck of processing high-speed graph streams. In this paper,we propose a GPU-based dynamic graph storage scheme to support existing graph algorithms easily. Furthermore,we propose parallel update algorithms to support efficient stream updates so that the maintained graph is immediately available for high-speed analytic processing on GPUs. Our extensive experiments with three streaming applications on large-scale real and synthetic datasets demonstrate the superior performance of our proposed approach. |
---|