Sampling based approaches for minimizing regret in uncertain Markov Decision Problems (MDPs)
Markov Decision Processes (MDPs) are an effective model to represent decision processes in the presence of transitional uncertainty and reward tradeoffs. However, due to the difficulty in exactly specifying the transition and reward functions in MDPs, researchers have proposed uncertain MDP models a...
محفوظ في:
المؤلفون الرئيسيون: | AHMED, Asrar, VARAKANTHAM, Pradeep, LOWALEKAR, Meghna, ADULYASAK, Yossiri, JAILLET, Patrick |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/3937 https://ink.library.smu.edu.sg/context/sis_research/article/4939/viewcontent/Sampling_based_approach_regret_MDP_JAIR_pv.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Regret based Robust Solutions for Uncertain Markov Decision Processes
بواسطة: AHMED, Asrar, وآخرون
منشور في: (2013) -
Solving Uncertain MDPs with Objectives that are Separable over Instantiations of Model Uncertainty
بواسطة: ADULYASAK, Yossiri, وآخرون
منشور في: (2015) -
Exploiting anonymity and homogeneity in factored Dec-MDPs through pre-computed binomial distributions
بواسطة: RANJAN KUMAR, Rajiv, وآخرون
منشور في: (2017) -
Online spatio-temporal matching in stochastic and dynamic domains
بواسطة: LOWALEKAR, Meghna, وآخرون
منشور في: (2018) -
Decentralized Stochastic Planning with Anonymity in Interactions
بواسطة: VARAKANTHAM, Pradeep, وآخرون
منشور في: (2014)