Obfuscation at-source: Privacy in context-aware mobile crowd-sourcing
By effectively reaching out to and engaging larger population of mobile users, mobile crowd-sourcing has become a strategy to perform large amount of urban tasks. The recent empirical studies have shown that compared to the pull-based approach, which expects the users to browse through the list of t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3976 https://ink.library.smu.edu.sg/context/sis_research/article/4978/viewcontent/mobile_crowd_tasker_afv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | By effectively reaching out to and engaging larger population of mobile users, mobile crowd-sourcing has become a strategy to perform large amount of urban tasks. The recent empirical studies have shown that compared to the pull-based approach, which expects the users to browse through the list of tasks to perform, the push-based approach that actively recommends tasks can greatly improve the overall system performance. As the efficiency of the push-based approach is achieved by incorporating worker's mobility traces, privacy is naturally a concern. In this paper, we propose a novel, 2-stage and user-controlled obfuscation technique that provides a trade off-amenable framework that caters to multi-attribute privacy measures (considering the per-user sensitivity and global uniqueness of locations). We demonstrate the effectiveness of our approach by testing it using the real-world data collected from the well-established TA$Ker platform. More specifically, we show that one can increase its location entropy by 23% with only modest changes to the real trajectories while imposing an additional 24% (< 1 min) of detour overhead on average. Finally, we present insights derived by carefully inspecting various parameters that control the whole obfuscation process. |
---|