Face detection using deep learning: An improved faster RCNN approach
In this paper, we present a new face detection scheme using deep learning and achieve the state-of-the-art detection performance on the well-known FDDB face detection benchmark evaluation. In particular, we improve the state-of-the-art Faster RCNN framework by combining a number of strategies, inclu...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/3998 https://ink.library.smu.edu.sg/context/sis_research/article/5000/viewcontent/Face_detection_using_deep_learning__An_improved_faster_RCNN_approach.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In this paper, we present a new face detection scheme using deep learning and achieve the state-of-the-art detection performance on the well-known FDDB face detection benchmark evaluation. In particular, we improve the state-of-the-art Faster RCNN framework by combining a number of strategies, including feature concatenation, hard negative mining, multi-scale training, model pre-training, and proper calibration of key parameters. As a consequence, the proposed scheme obtained the state-of-the-art face detection performance and was ranked as one of the best models in terms of ROC curves of the published methods on the FDDB benchmark |
---|