A multimodal and multilevel ranking framework for content-based video retrieval

One critical task in content-based video retrieval is to rank search results with combinations of multimodal resources effectively. This paper proposes a novel multimodal and multilevel ranking framework for content-based video retrieval. The main idea of our approach is to represent videos by graph...

Full description

Saved in:
Bibliographic Details
Main Authors: HOI, Steven C. H., LYU, Michael R.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2007
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/4020
https://ink.library.smu.edu.sg/context/sis_research/article/5022/viewcontent/ICASSP07_MMML.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:One critical task in content-based video retrieval is to rank search results with combinations of multimodal resources effectively. This paper proposes a novel multimodal and multilevel ranking framework for content-based video retrieval. The main idea of our approach is to represent videos by graphs and learn harmonic ranking functions through fusing multimodal resources over these graphs smoothly. We further tackle the efficiency issue by a multilevel learning scheme, which makes the semi-supervised ranking method practical for large-scale applications. Our empirical evaluations on TRECVID 2005 dataset show that the proposed multimodal and multilevel ranking framework is effective and promising for content-based video retrieval.