Online deep learning: Learning deep neural networks on the fly

Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch setting, requiring the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream. We aim to address an open c...

Full description

Saved in:
Bibliographic Details
Main Authors: SAHOO, Doyen, PHAM, Hong Quang, LU, Jing, HOI, Steven C. H.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2018
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/4083
https://ink.library.smu.edu.sg/context/sis_research/article/5086/viewcontent/7._May01_2018___Online_Deep_Learning_Learning_Deep_Neural_Networks_on_the_Fly__IJCAI2018_.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch setting, requiring the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream. We aim to address an open challenge of “Online Deep Learning” (ODL) for learning DNNs on the fly in an online setting. Unlike traditional online learning that often optimizes some convex objective function with respect to a shallow model (e.g., a linear/kernel-based hypothesis), ODL is more challenging as the optimization objective is non-convex, and regular DNN with standard backpropagation does not work well in practice for online settings. We present a new ODL framework that attempts to tackle the challenges by learning DNN models which dynamically adapt depth from a sequence of training data in an online learning setting. Specifically, we propose a novel Hedge Backpropagation (HBP) method for online updating the parameters of DNN effectively, and validate the efficacy on large data sets (both stationary and concept drifting scenarios).