Identifying elderlies at risk of becoming more depressed with Internet-of-Things
Depression in the elderly is common and dangerous. Current methods to monitor elderly depression, however, are costly, time-consuming and inefficient. In this paper, we present a novel depression-monitoring system that infers an elderly’s changes in depression level based on his/her activity pattern...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4096 https://ink.library.smu.edu.sg/context/sis_research/article/5099/viewcontent/Ou2018_Chapter_IdentifyingElderliesAtRiskOfBe.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |