Scalable hypergraph-based image retrieval and tagging system

Massive amounts of images textually annotated by different users are provided by social image websites, e.g., Flickr. Social images are always associated with various information, such as visual features, tags, and users. In this paper, we utilize hypergraph instead of ordinary graph to model social...

Full description

Saved in:
Bibliographic Details
Main Authors: CHEN, Lu, GAO, Yunjun, ZHANG, Yuanliang, WANG, Sibo, ZHENG, Baihua
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2018
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/4119
https://doi.org/10.1109/ICDE.2018.00032
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Massive amounts of images textually annotated by different users are provided by social image websites, e.g., Flickr. Social images are always associated with various information, such as visual features, tags, and users. In this paper, we utilize hypergraph instead of ordinary graph to model social images, since relations among various information are more sophisticated than pairwise. Based on the hypergraph, we propose HIRT, a scalable image retrieval and tagging system, which uses Personalized PageRank to measure vertex similarity, and employs top-k search to support image retrieval and tagging. To achieve good scalability and efficiency, we develop parallel and approximate top-k search algorithms with quality guarantees. Experiments on a large Flickr dataset confirm the effectiveness and efficiency of our proposed system HIRT compared with existing state-of-the-art hypergraph based image retrieval system. In addition, our parallel and approximate top-k search methods are verified to be more efficient than the state-of-the-art methods and meanwhile achieve higher result quality.