Hybrid privacy-preserving clinical decision support system in fog-cloud computing
In this paper, we propose a framework for hybrid privacy-preserving clinical decision support system in fog cloud computing, called HPCS. In HPCS, a fog server uses a lightweight data mining method to securely monitor patients' health condition in real-time. The newly detected abnormal symptoms...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4120 https://ink.library.smu.edu.sg/context/sis_research/article/5123/viewcontent/Hybrid_privacy_preserving_2018_av.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | In this paper, we propose a framework for hybrid privacy-preserving clinical decision support system in fog cloud computing, called HPCS. In HPCS, a fog server uses a lightweight data mining method to securely monitor patients' health condition in real-time. The newly detected abnormal symptoms can be further sent to the cloud server for high-accuracy prediction in a privacy-preserving way. Specifically, for the fog servers, we design a new secure outsourced inner-product protocol for achieving secure lightweight single-layer neural network. Also, a privacy-preserving piecewise polynomial calculation protocol allows cloud server to securely perform any activation functions in multiple-layer neural network. Moreover, to solve the computation overflow problem, a new protocol called privacy-preserving fraction approximation protocol is designed. We then prove that the HPCS achieves the goal of patient health status monitoring without privacy leakage to unauthorized parties by balancing real-time and high-accurate prediction using simulations. |
---|